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ABSTRACT

Warm-season precipitation in the U.S. ‘‘Corn Belt,’’ the Great Plains, and the Midwest greatly influences

agricultural production and is subject to high interannual and intraseasonal variability.Unfortunately, current

seasonal and subseasonal forecasts for summer precipitation have relatively low skill. Therefore, there are

ongoing efforts to understand hydroclimate variability targeted at improving predictions, particularly through

its primary transporter of moisture: the Great Plains low-level jet (LLJ). This study uses the Community

Climate SystemModel, version 4 (CCSM4), July forecasts, made as part of the North AmericanMulti-Model

Ensemble (NMME), to assess skill in reproducing themonthly Great Plains LLJ and associated precipitation.

Generally, the CCSM4 forecasts capture the climatological jet but have problems representing the observed

variability beyond two weeks. In addition, there are predictors associated with the large-scale variability

identified through linear regression analysis, shifts in kernel density estimators, and case study analysis that

suggest potential for improving confidence in forecasts. In this study, a strengthened Caribbean LLJ, negative

Pacific–North American (PNA) teleconnection, El Niño, and a negative Atlantic multidecadal oscillation

each have a relatively strong and consistent relationship with a strengthened Great Plains LLJ. The circu-

lation predictors, the Caribbean LLJ and PNA, present the greatest ‘‘forecast of opportunity’’ for considering

and assigning confidence in monthly forecasts.

1. Introduction

Warm-season extreme precipitation in the north-

central Great Plains has significant socioeconomic

implications, ranging from agricultural production to

human and property loss from associated flooding. For

this reason, there are ongoing efforts to understand

Great Plains hydroclimate variability and improve

both seasonal and subseasonal prediction of heavy

rainfall events as well as how a lack of such events

might lead to drought.

Extreme warm-season precipitation in the United

States dominates in the north-central and Midwest re-

gions (Dirmeyer andKinter 2010), and the leading cause

is the strengthening of the Great Plains low-level jet

(LLJ; Arritt et al. 1997; Cook et al. 2008; Feng et al.

2016; Gimeno et al. 2016; Nayak andVillarini 2017). The

Great Plains LLJ has a diurnal cycle caused by thermal

gradient reversals over sloping terrain and frictional

decoupling amid a rising boundary layer (Blackadar

1957; Fast and McCorcle 1990; Holton 1967; Jiang et al.

2007; Mitchell et al. 1995; Parish et al. 1988; Parish and

Oolman 2010; Shapiro et al. 2016). TheGreat Plains LLJ

peaks at nighttime at a height just above the bound-

ary layer, between 925 and 850hPa (Banta et al. 2002;

Whiteman et al. 1997). It effectively transports heat and

moisture from the Gulf of Mexico, providing an ideal

thermodynamic environment for convection and pre-

cipitation at its jet exit (Higgins et al. 1997; Hodges and

Pu 2019; Pu and Dickinson 2014; Weaver et al. 2009a).

Low-level moisture fluxes are known to peak in July,

with values sometimes greater than 200 kgm21 s21

(Weaver and Nigam 2008).

Previous studies have uncovered Great Plains LLJ

large-scale, low-frequency variability that contributes to

its interannual and intraseasonal fluctuations. Weaver

and Nigam (2008) connected a strengthenedGreat Plains

LLJ to positive anomalous diabatic heating in the eastern

tropical Pacific. They also related the Great Plains LLJ to

the negative phase of the 700-hPa geopotential height

North Atlantic Oscillation (NAO), with a temporal cor-

relation of 20.46. They also showed that the difference
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between the first two empirical orthogonal function

modes of Great Plains LLJ variability depended on its

connection to its moisture source, the Gulf of Mexico.

Multiple studies suggested that a negative Pacific–

North America (PNA) teleconnection has a strong

influence on the Great Plains LLJ on pentad and/or

monthly time scales (Harding and Snyder 2015;

Mallakpour and Villarini 2016; Nayak and Villarini

2017; Patricola et al. 2015). Harding and Snyder

(2015) found that 78% of extreme rainfall events in

the north-central United States exhibited a negative

PNA signal within two weeks prior. It is suggested

that tropically forced teleconnections, such as the

PNA, have an important role in North American LLJ

variability (Ting and Wang 1997; Trenberth and

Guillemot 1996; Weaver et al. 2016), though there is

debate on whether the 500-hPa pattern is truly forced

by tropical Pacific activity in the midsummer months

(Ding et al. 2011; Zhu and Li 2016). From a practical

standpoint, the PNA teleconnection pattern has po-

tential for submonthly forecasting based on its vari-

ability on medium-range time scales (Barnston and

Livezey 1987; Feldstein 2000).

Currently, monthly predictions of mid to late-summer

circulation are heavily influenced by SST anomaly con-

ditions. Opposite SST anomalies in the tropical Pacific

and North Atlantic often result in low-level circulation

patterns that favor Great Plains LLJ strengthening (Hu

and Feng 2012; Patricola et al. 2015;Weaver et al. 2009b;

Weaver 2013; Weaver et al. 2016; Yu et al. 2017). Spring

LLJs have been linked to the cool phase of El Niño–
Southern Oscillation (ENSO), whereas the summer LLJ

has been linked to the warm phase (Danco and Martin

2018; Krishnamurthy et al. 2015; Ting and Wang 1997;

Trenberth and Guillemot 1996; Yu et al. 2016). ENSO

state influences a circulation response, but the moisture

supply for the extreme events originates in the sub-

tropical Atlantic (Li et al. 2016; Li et al. 2017; Veres and

Hu 2013). Therefore, both basins play a role in driving

precipitation events, though their responses have intra-

seasonal variations.

The Caribbean LLJ has a positive correlation with the

Great Plains LLJ moisture transport (Mestas-Nuñez
et al. 2007; Wang 2007; Krishnamurthy et al. 2015).

ENSO’s modulation on the Caribbean LLJ is different

from spring to summer as well. In summer, easterlies are

enhanced by an El Niño state. In conjunction with a

cool Atlantic state, or negative Atlantic multidecadal

oscillation (AMO) phase, the oppositely phased SST

anomalies and strong Caribbean LLJ are associated

with stronger southerlies into the Great Plains region.

The temporal correlation between the Caribbean LLJ

and Great Plains LLJ is 0.47 for the summer months

(Krishnamurthy et al. 2015). Dirmeyer and Kinter (2010)

also commented on the Caribbean Sea being a significant

moisture source for extreme precipitation events, such as

summer of 1993. Caribbean LLJ strength is an indicator

of the modulation of the North Atlantic subtropical high

and its associated moisture transport capabilities into the

Great Plains (Wang 2007).

Anomalous soil moisture may fuel summertime pre-

cipitation events, but the response time is inconclusive.

Li et al. (2016) and Li et al. (2017) demonstrated that the

Great Plains LLJ responds to wet soil dynamically and

thermodynamically, causing it to strengthen in general.

Weaver et al. (2009a) suggested that soil moisture had a

relatively small effect on the evolution of hydroclimate

extremes, and here we focus on the large-scale dynamical

influences of extremes. In addition, the North American

Rocky Mountains is an important feature when simulat-

ing Great Plains LLJ activity as it strongly participates in

stationary wave modulation (Byerle and Paegle 2003;

Ting and Wang 2006; Weaver and Nigam 2011), but to-

pographical considerations are beyond the scope of

this paper.

The primary objective in this study is to analyze large-

scale, low-frequency variability features in a predictive

framework by employing an ensemble approach. Here

we use the Community Climate SystemModel, version 4

(CCSM4), forecasts to assess the skill in predicting

anomalous Great Plains LLJ events. There are three

main research questions addressed here:

1) Are the CCSM4 forecasts able to reproduce the

interannual variability of the Great Plains LLJ and

its associated extrememidsummerPlains andMidwest

precipitation?

2) Are there relatively consistent large-scale sources

of predictability for midsummer forecasts out to a

month?

3) Are these large-scale predictors from point 2 above

able to provide a ‘‘forecast of opportunity’’ (i.e., con-

fidence in forecast increases when large-scale predictor

exhibits its expected signal for an event)?

In the following study, there is evidence that suggests

that each analyzed source of predictability has a robust

relationship with the Great Plains LLJ. However, the

circulation predictors, rather than SSTs, provide the

forecast of opportunity. SST forecast skill is already

relatively high and the ensemble members are typically

in agreement with these relatively short lead times.

Circulation predictors have relatively lower skill and

their potential relies on ensemble agreement (forecast

confidence). Section 2 presents the data and methods

used to produce and analyze the results. Section 3 de-

scribes the results, organized into subsections about the
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model’s skill, potential sources of predictability and

its forecast value, and case study investigation. Last,

section 4 provides a summary and more detailed dis-

cussion of these results.

2. Data and methods

a. Model and observations

The forecast model used for this study is the National

Center Atmospheric Research (NCAR) CCSM4. It

is currently being used for routine real-time predic-

tions (http://www.cpc.ncep.noaa.gov/products/NMME/)

as part of North American Multi-Model Ensemble

(NMME; Kirtman et al. 2014). The analysis presented

here focuses on CCSM4 retrospective forecasts pri-

marily because the data needed to assess LLJs are

readily available to the research team, whereas the data

from the other NMME models in the public archive do

not include sufficient vertical resolution to capture the

LLJs.Moreover, the data in themultimodel archive only

include data up through 2010, where we consider data up

through 2016. Finally, we also make comparisons with

extended control simulations, which are also not readily

available for all the NMMEmodels. In this study, the 10

ensemble members of CCSM4 have a spatial resolution

of 18 latitude 3 18 longitude. They are initialized every

1 July between 1982 and 2016 and analyzed as the July

monthly average unless noted otherwise. July was cho-

sen because mechanisms for modulating the Great

Plains LLJ often differ when comparing spring (April–

June) and late summer/early fall (August–October).

July possesses characteristics from both subseasons, has

the highest correlation with regional precipitation, and

is most representative of summertime circulation pat-

terns (Weaver and Nigam 2008; Weaver et al. 2009a,b).

CCSM4 is a fully coupled atmosphere–ocean model in

which the atmosphere, ocean, and land are initialized

from Climate Forecast System Reanalysis (CFSR), and

ensemble generation is determined by the time-lagged

method (i.e., ensembles take initial conditions from

different yet consecutive output times of CFSR around

1 July). A discussion of the initialization procedures are

described in some detail in Kirtman and Min (2009),

Paolino et al. (2012) and Infanti and Kirtman (2016).

The results regarding climatology include analysis from

the free-running CCSM4, which is not initialized as the

forecast version (‘‘cold start’’).

The Modern-Era Retrospective Analysis for Re-

search and Applications, version 2 (MERRA-2) is a

global retrospective reanalysis dataset that provides

subdaily estimates beginning in 1980 (Bosilovich et al.

2015; Gelaro et al. 2017). For temporal consistency with

the CCSM4 forecasts, analysis begins in 1982 and ex-

tends through 2016. MERRA-2’s spatial resolution is

0.58 latitude 3 0.6258 longitude but is bilinearly inter-

polated on the CCSM4 grid when necessary for com-

parison. Most of the monthly and daily meteorological

variables in this study are from MERRA-2 data. Pre-

cipitation values are taken from the Climate Prediction

Center (CPC) unified gauge-based analysis, which pro-

vides daily data over conterminous United States with a

0.258 3 0.258 spatial resolution (Chen et al. 2008; Xie

et al. 2007).

The Extended Reconstructed Sea Surface Tem-

perature, version 5 (ERSST-5) provides monthly,

global SST data from the International Comprehensive

Ocean–Atmosphere Dataset (ICOADS; provided by

the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,

from their website at https://www.esrl.noaa.gov/psd/). It

incorporates in situ data on a 28 3 28 grid and represents

spatial variability of SSTs well (Huang et al. 2017).

Anomalies are set as deviations from the 1971–2000

average.

b. Indices

The LLJ index is defined as the averaged 900-hPa me-

ridional wind (V900) in the domain 258–358N, 1028–978W,

and the Great Plains precipitation index is defined as

the averaged precipitation in the domain 358–458N,

1008–908W (Weaver and Nigam 2008). The Caribbean

LLJ index is the averaged 900-hPa zonal wind (U900)

in the domain 12.58–17.58N, 808–708W (Wang 2007).

The index is multiplied by 21 to make the easterlies

positive, a more straightforward way to relate the re-

lationship between a strengthened Caribbean LLJ and

Great Plains LLJ. These domains are outlined in rele-

vant figures.

CPC (http://www.cpc.ncep.noaa.gov/) has a method-

ology for calculating the PNA, AMO, and Niño-3.4 in-

dices. This study uses similar methodologies, including

standardizing all indices over the time series. The PNA

is defined as [Z*(158–258N, 1808–1408W) 2 Z*(408–
508N, 1808–1408W) 1 Z*(458–608N, 1258–1058W) 2
Z*(258–358N, 908–708W)], where Z* denotes monthly

mean 500-hPa height (Z500) anomaly that is obtained

by subtracting the July mean value between 1982 and

2016. Niño-3.4 is defined as [T*(58S–58N, 1708–1208W)],

where T* denotes SST anomalies from ERSST-5 or

CCSM4. The AMO index is defined as ocean-only

[T*(08–708N, 808W–08)], where T* denotes SST anomalies

from ERSST-5 or CCSM4.

c. Skill scores

There is an assortment of skill metrics used to compare

MERRA-2 toCCSM4 forecasts. The anomaly correlation
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coefficient is a well-known statistic that essentially ana-

lyzes the agreement of the anomaly’s sign between the

observation and model ensemble mean (Wilks 1995).

Here it is done on a gridpoint-by-gridpoint basis. A neg-

ative value indicates opposing anomalies and a higher,

positive value indicates higher agreement between fore-

cast and observed anomalies.

The ranked probability skill score (RPSS) relates

the forecast skill to a reference forecast—in this case,

climatology—by considering how far the forecast’s cu-

mulative distribution function is from the observed

outcome (Weigel et al. 2007). This is better for cate-

gorical probability forecasts. In this case, V900 and

precipitation are separated into strong, moderate, and

weak events using tercile distribution. RPSS is also done

on a gridpoint-by-gridpoint basis.

The anomaly correlation coefficient and RPSS are

also used to measure homogeneous predictability. Ho-

mogeneous predictability demonstrates the model’s

ability to predict itself (Becker et al. 2014). One en-

semble member is treated as ‘‘truth’’ (in this study, en-

semble 10 was chosen arbitrarily), and the skill scores

are reassessed in a perfect model assumption. This is a

way to gauge how the model perceives its predictability

of the LLJ and precipitation; a relatively high score

suggests physical mechanisms may exist that influence

ensemble agreement.

Finally, root-mean-square (RMS) error and RMS

spread is used for discussing the model’s progression

throughout themonth (Simmons et al. 1995). RMS error

compares the ensemble mean to observation, and RMS

spread averages the distance between each ensemble

and the ensemble mean. In an ensemble framework, the

ratio of spread to error should be 1:1 throughout the

month because ensemble disagreement should be pro-

portional to potential error as the lead time increases. A

small ratio would indicate an overconfident ensemble

set since the spread is not correctly signaling lack of

agreement between ensemble mean and observation.

d. Predictor analysis

By comparing the large-scale teleconnection patterns

of CCSM4 forecasts and MERRA-2, a consistent link

between the standardized index and V900 in the model

provides an opportunity for forecasters. Linear regres-

sions determine ‘‘slope’’ associations between variables

and the index time series. It may also help explain dis-

crepancies in atmospheric response between the model

and reanalysis. The results reflect the mean from each

ensemble member’s regression rather than a regression

from the ensemble mean. In this study, the percentages

of ensembles that agree with the sign in the Great Plains

LLJ region are superimposed, an advantage of this

approach. It is only considered valuable if at least 70%

of the ensembles agree in the LLJ index region.

Kernel density estimators (KDEs) are smoothed his-

tograms that can be analyzed like nonparametric proba-

bility density functions. One can identify whether the

distribution shifts of a sample set are statistically different

from the group containing all values using KDEs. Here,

each large-scale predictor identified by the linear re-

gression is used as a criterion for creating a sample set of

V900 in the LLJ index region to be compared with the

group consisting of total V900 values in LLJ index region

for all months. In addition, pairs of these sources are

grouped; a sample set is created when two predictors are

occurring simultaneously. The selected pairs in results

(circulation predictors, Pacific predictors, Atlantic pre-

dictors) are examples of potential background states

aimed to isolate the circulation influences and the influ-

ences from each ocean basin. Note that all KDE shifts in

the results will be statistically significant (p value, 0.05).

e. Case study setup

Four case studies were chosen in order to better un-

derstand the CCSM4 forecasts’ strengths and weaknesses

in addition to demonstrating the realistic uses of these

sources of predictability. The case studies were chosen

based their positive or negative precipitation anomaly

from the observational Great Plains precipitation index,

such that two cases would be considered well-known wet

events and two cases would be considered well-known

dry events. Then, these categories were further split to

include one well-forecasted event and one poorly fore-

casted event. The chosen cases are taken from every

decade of the study’s range of years. The four cases are as

follows:

1) 1988—Good forecast, dry anomaly

2) 1993—Good forecast, wet anomaly

3) 2003—Bad forecast, dry anomaly

4) 2016—Bad forecast, wet anomaly

Cases are used to compare large-scale circulation and

climate variability patterns to better locate any potential

forecasting opportunities when using the CCSM4 or

similar model. The objective of this analysis is to provide

insight into impactful events, decomposing the key dif-

ferences between predictors of good and bad forecasts

to determine which predictors are more advantageous

when assigning forecast confidence. Last, the spatial

signal-to-noise ratio will assess the applicability of using

monthly mean values for the circulation predictors. The

signal-to-noise ratio takes the variance of monthly data

and divides by the average variance of the daily data

from the monthly mean. Climate forecasting relies

on persistence of background flow; therefore, locations
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with relatively high signal-to-noise ratios of Z500 and

U900 are more beneficial when forecasting past two

weeks when the signal is sufficiently large compared

to the noise.

3. Results

a. CCSM4 skill evaluation

Model skill is first evaluated by calculating climato-

logical bias between the CCSM4 and the reanalysis or

observational data. CCSM4 produces a July climato-

logical Great Plains LLJ that resembles the one in

MERRA-2, though the difference between the two re-

veals immediate biases. The model Great Plains LLJ is

too strong—greater by 2ms21—and extends too far east

(Fig. 1, bottom row). However, the forecast model

shows slight improvement over the free-running model,

supporting that initialization does improve the predic-

tion of climatology. The climatological vertical profile of

the meridional wind in the LLJ index region for both

MERRA-2 and CCSM4 forecasts, seen in Fig. 2, reveals

that the meridional wind is overestimated in the entire

layer below 850hPa in CCSM4 and the peak occurs at

925hPa instead. This does raise concerns about using

900hPa as the level for evaluating the Great Plains

LLJ. However, because the entire layer is consistently

overestimated, and the reanalysis shows the peak at

900 hPa, it remains an appropriate choice. CCSM4

forecast precipitation climatology (Fig. 3) exposes the

several challenges in precipitation prediction, but

most important to this study is that the Plains/Midwest is

1–2mmday21 too dry. It is also noted that the Southeast

United States is 1–2mmday21 too wet. The Southeast

U.S. precipitation may be dynamically related to Great

Plains LLJ events through background circulation (Pu et al.

2016). However, while some results pertain to Southeast

U.S. precipitation forecasting, it will not be a focus due to its

limited connection to the Great Plains LLJ.

The anomaly correlation coefficient and RPSS for the

CCSM4 forecasts reveal strengths and weaknesses in

representing variability (Fig. 4). Anomaly correlation

coefficient for V900 shows relatively large skill in the jet

core (0.5–0.6), and the anomaly correlation coefficient

for precipitation is relatively high in the jet entrance and

exit (0.4–0.5). RPSS is largely consistent with anomaly

correlation coefficient but also highlights problematic

areas. Once more, the best RPSS score for V900 re-

mains in the climatological jet (0.3–0.4) and sharply

decreases east of the jet (,0), where the negative RPSS

indicates a forecast worse than assuming climatology.

There is modest precipitation skill at the jet entrance

and jet exit (0.1–0.2), but the skill over the rest of the

FIG. 1. July climatology for V900 for (top left) MERRA-2, (top center) CCSM4 free running model, and (top right) CCSM4 forecast

model. (Bottom center) Subtraction difference between CCSM4 free running model and MERRA-2 climatology. (Bottom right) Sub-

traction difference between CCSM4 forecast model and MERRA-2 climatology. Boxes indicate LLJ index domain.
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Great Plains and Midwest region is low or worse than

assuming climatology.

The homogeneous predictability skill scores improve

almost everywhere, as expected, reaching a maximum

anomaly correlation coefficient in the jet core (0.6–0.7)

and at the precipitation entrance and exit (0.4–0.5), seen

in Fig. 5. The CCSM4 suggests a physical, predictable

climate feature. In addition, the hot spots of relatively

high scores are different, which illustrates the dif-

ferences in variability between observation and the

CCSM4 forecasts. For example, relatively high homog-

enous predictability scores around the bottom-right

corner of the Great Plain Precipitation index domain

suggest a mechanism in the model that places a pre-

dictable precipitation signal there. This hot spot is far-

ther east from what real forecast skill indicates. This is

consistent with above results revealing that the model

simulates a climatological Great Plains LLJ that extends

too far to the east.

July daily data reveal how much skill is related to

initialization. During the first two weeks, the highest

anomaly correlation coefficient scores are located in the

jet core (0.2; Fig. 6). The anomaly correlation coefficient

plummets further during the last couple weeks of the

month. In addition, the ratio of RMS spread to RMS

error ranges from 0.5 to 0.8 in first two weeks and

sharply increases to 0.8–1 in last two weeks. The attri-

bution of any skill within the first two weeks is most

likely due to initialization, and the lower ratio of RMS

spread to error signals overconfidence. Erroneous jet

events may result from poor simulations of changing

circulation responses after the first week or two as the

CCSM4 ensembles diverge.

FIG. 3. As in Fig. 1, but for precipita-

tion. Observed data from CPC unified

gauge-based analysis. Boxes indicate

Great Plains precipitation index domain.

FIG. 2. Averagemeridional wind as a function of pressure level in

LLJ index region (outlined in Fig. 1); the red line shows CCSM4

climatology and the blue line shows MERRA-2 climatology.
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The skill scores and ratio between RMS spread and

RMS error further motivates the need for additional

large-scale predictors of precipitation. Background flow

at initialization is a key factor in building confidence in

forecasts of Great Plains LLJ and, hence, rainfall events.

The Caribbean LLJ, PNA, ENSO, and AMO are the

chosen large-scale teleconnections in this study due to

their connection to the Great Plains LLJ in previous

literature and their quasi-persistent nature. Therefore,

the following analysis will focus on quantitatively re-

lating this set of large-scale teleconnections to the Great

Plains LLJ as well as comparing the jet responses be-

tween MERRA-2 and CCSM4.

b. Identifying predictors

Weaver and Nigam (2008) found that the temporal

correlation between the Great Plains LLJ and precipi-

tation indices in July is 0.71. CCSM4 does produce wet

FIG. 4. Anomaly correlation coefficient scores for (top left) V900 and (top right) precipitation. RPSS

for (bottom left) V900 and (bottom right) precipitation. Data have been spatially smoothed using a

Gaussian filter.
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conditions in the Great Plains and Midwest dur-

ing Great Plains LLJ events, but this relationship is

underestimated (Fig. 7). Since the index is standard-

ized, it can be interpreted that for 11s LLJ events,

observations indicate a 1–2mmday21 increase in

rainfall over the Midwest and northern Plains. In

CCSM4, this response peaks at 0.5mmday21 and

extends eastward into the Great Lakes region. V900

and the LLJ index are established as potential predictors

or proxies for Great Plains precipitation activity,

though there are difficulties in representing the

variability.

CCSM4 captures a positive relationship between the

Caribbean LLJ and Great Plains LLJ (Fig. 8). This sig-

nals that there is an extension of the above-normal

easterlies from the North Atlantic subtropical high into

the Caribbean that is related to the strengthening of

the Great Plains LLJ. The Caribbean LLJ is the chosen

FIG. 5. Homogeneous predictability of CCSM4 forecasts. Ensemble 10 is used as ‘‘truth’’ for anomaly correlation

coefficient scores and RPSS. Format is similar to Fig. 4.
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indicator for North Atlantic subtropical high modula-

tion rather than the NAO in this framework. The NAO

regression onto V900 did not reach the 70% ensemble

agreement threshold in the LLJ region. As mentioned

in the introduction, the Caribbean LLJ also includes

moisture supply information from the Caribbean Sea.

Fortunately, the circulation response outside the jet

region in CCSM4 is comparable in magnitude to

MERRA-2 (10.8m s21).

A negative PNA phase is linked to a strengthened

Great Plains LLJ (Fig. 9). The 900-hPa total mois-

ture transport (VQ900) is shown instead of V900 to

demonstrate the importance of the jet’s attachment to

the Gulf of Mexico as a moisture support. CCSM4’s

depiction is shifted northward—away from the mois-

ture source—compared to MERRA-2, which could

reduce or alter precipitation processes. Furthermore,

the regressions are relatively comparable, though the

FIG. 6. Anomaly correlation coefficient scores for CCSM4 for (top left) 1–15 Jul and (top right) 16–31 Jul. Ratios

of RMS spread to RMS error for (bottom left) 1–15 Jul and (bottom right) 16–31 Jul. Data has been spatially

smoothed using a Gaussian filter.
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magnitude of CCSM4’s regression is only half of

MERRA-2’s regression (28 and 215m s21 g kg21,

respectively). The circulation response outside the jet

region is also comparable, similar to the Caribbean

LLJ regression, supporting the idea that the monthly

PNA and Caribbean LLJ present a forecast of op-

portunity (i.e., an expected signal bolsters forecast

confidence in Great Plains LLJ predictions). Large-

scale circulation changes, such as the Caribbean LLJ

and PNA, often reflect an atmospheric response to

SST anomalies. Therefore, SST variability may be

an important influence on circulation changes, and

knowing the phase of the tropical Pacific and northern

Atlantic SST is a component in understanding Great

Plains LLJ modulation.

ENSO and AMO have separate effects on the Great

Plains LLJ, but it would be beneficial to understand

their possible constructive and destructive interference.

FIG. 7. Regression coefficient for11s LLJ events onto precipitation for (left) MERRA-2 (LLJ index) and CPC

unified gauge-based analysis (precipitation data), and (right) CCSM4. The solid black contours for CCSM4 indicate

70% and 90% ensemble agreement about a positive anomaly.

FIG. 8. Regression coefficient for11s Caribbean LLJ events onto V900 for (left) MERRA-2 and (right) CCSM4.

The solid black contours for CCSM4 indicate 70% and 90% ensemble agreement about a positive anomaly.
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A warm phase of Niño-3.4 and a cool phase of AMO are

associatedwith a strengthenedGreat Plains LLJ (Fig. 10).

Weaver et al. (2009b) and Hu and Feng (2012) suggest

that Pacific and Atlantic SSTs have a quasi-linear re-

lationship regarding their circulation responses. There-

fore, by adding the responses, there is some indication of

whether there is constructive or destructive interference

(i.e., if the effect of ENSO and AMO amplifies the Great

PlainsLLJ response anomaly or reduces it). InMERRA-2,

the regression from multidecadal variability of the

Atlantic (21.2ms21) overwhelms the regression from in-

terannual variability of the tropical Pacific (10.8ms21),

and not just for the Great Plains LLJ but the entire

eastern United States. Arguably, their combined effects

are small and may even ‘‘wash out’’ any Great Plains

LLJ signal. By contrast, CCSM4 shows approximately

half the regression slope of both AMO and ENSO (20.6

and 10.4ms21, respectively), and their cumulative ef-

fects result in a central-eastern U.S. dipole of meridional

wind, favoring the AMO phase when linearly associat-

ing SST anomalies to a Great Plains LLJ response. In

general, there are large differences between MERRA-2

and CCSM4 in terms of how the eastern United States

responds to SST variability. One may argue that the

proper sign in the Great Plains LLJ region suggests that

ENSO and AMO may still be advantageous predictors

of the jet, but future analysis is needed to better un-

derstand the overall circulation response to ENSO and

AMO separately in CCSM4.

These predictors are summarized in the following

KDEs by comparing the total group of V900 values

in the LLJ region with a subset of V900 values during

common example background states. As mentioned

before, all the KDE shifts fromMERRA-2 and CCSM4

have a p value, 0.05, which shows that the relationships

from Figs. 8–10 are significant in the LLJ region. The

MERRA-2 KDEs reveal that individual predictors shift

the distribution about 10.5ms21, but this is not as large

as if two predictors were present simultaneously (Fig. 11).

The other panels indicate that circulation influences

(positive Caribbean LLJ and negative PNA), Pacific in-

fluences (El Niño and negative PNA), and Atlantic in-

fluences (negative AMO and positive Caribbean LLJ)

all show large shifts of the mean (about 11.5, 10.9,

and 11.2m s21, respectively). The results for CCSM4

(Fig. 12) are similar. First, it is noted that the distri-

butions for all groups are narrower, indicating an un-

derestimation in the variability of V900 in this region.

However, the KDE shift is the same direction as

MERRA-2. Perhaps the largest forecast of opportunity

results from the circulation influences and Atlantic

influences (mean shift of 10.6 and 10.5m s21, re-

spectively) since their KDE shift is comparable to

MERRA-2.

c. Case study analysis

Figures 13 and 14 summarize the case studies of in-

terest. The first two rows are well-known dry and wet

years, 1998 and 1993, respectively, and the correct signs

of V900 and precipitation in LLJ region are well-

simulated in both the CCSM4 ensemble mean (middle

column) and forecast probabilities (right column).

FIG. 9. Regression coefficient for 11s PNA events onto 900-hPa total meridional moisture transport for (left)

MERRA-2 and (right) CCSM4. The solid black contours for CCSM4 indicate 70% and 90% ensemble agreement

about a negative anomaly.
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Forecast probability plots arguably provide more in-

formation than ensemble means for depicting model

output since they use all ensembles to consider a range

of possible outcomes. 1993 has a.90%probability of an

above-normal V900 event in the LLJ region, and 1988

has a .50% probability of a below-normal event (note

that the climatological probability is 33%). As expected,

the precipitation anomaly is located in the jet exit region

for the well-forecasted events. The bottom two rows are

considered poorly simulated dry and wet events 2003

and 2016, respectively. While the CCSM4 ensemble

mean has a negative V900 anomaly for 2003, it does not

extend as far as with MERRA-2, and there is a positive

V900 anomaly directly above that is not present in

MERRA-2. The CCSM4 forecast shows a 90% proba-

bility of a jet event into the Southeast United States that

FIG. 10. Regression coefficient for 11s Niño-3.4 events onto V900 for (top left) MERRA-2 and (top right)

CCSM4. (middle left),(middle right) As in the top row, but for11sAMOevents. (bottom left),(bottom right) Sum

of regression coefficients from the top and middle rows. The solid black contours for CCSM4 in the top and middle

rows indicate 70% and 90% ensemble agreement for expected anomaly in the Great Plains LLJ region.
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is not detected in MERRA-2. This strong, eastward LLJ

created an erroneous positive precipitation anomaly

that is not present in MERRA-2; rather, MERRA-2

has a negative precipitation anomaly as a result of its

prominent negative V900 anomalies. Last, the 2016 case

in MERRA-2 shows a strong LLJ. CCSM4 does not

capture the LLJ or the precipitation anomaly at all.

To understand the large-scale environment of these

events and to try to apply the sources of predictabil-

ity from the previous section’s linear regressions,

Fig. 15 decomposes the major differences between the

SSTs and circulation in the good forecasts versus bad

forecasts. Note that forward (back) slashes corre-

spond with dry 1988 and 2003 (wet 1993 and 2016)

forecasts. Here we see that for both the Pacific and

Atlantic, the SST anomalies are well-simulated in the

CCSM4 forecasts, and the ensembles agree on the sign

for both years. However, this is also the case for the

bad forecasts, which is expected for one-month SST

anomaly forecasts. CCSM4 correctly simulated the

equatorial SST anomalies in the Pacific and the large-

scale SST anomaly features in the North Atlantic ba-

sin. This example demonstrates that SST anomalies in

both basins may not provide a forecast of opportunity

FIG. 11. MERRA-2 KDEs of V900 values in the LLJ index region for (top left) all predictors separately,

(top right) circulation predictors occurring simultaneously, (bottom left) predictors in the Pacific Ocean basin

occurring simultaneously, and (bottom right) predictors in the Atlantic Ocean basin occurring simultaneously. The

black solid KDE in every panel contains the full set of V900 values.
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because the model is already realistic, at least at these

relatively short lead times.

Conversely, Z500 anomalies in the extratropical

North Pacific and U900 anomalies in the Caribbean re-

gion show the disagreement among ensembles (Fig. 16).

These circulation anomalies were plotted to analyze a

pattern represented by the PNA and Caribbean LLJ,

respectively. In the good forecasts, CCSM4 does not

replicate the wave pattern seen in MERRA-2. There is

more of a north–south dipole of Z500 stretched over

the extratropical North Pacific, and perhaps the only

agreement with MERRA-2 is the strong troughing over

the western United States. The hatched regions sug-

gest strong agreement among the ensembles. The bad

forecasts also fail to produce the wave pattern seen in

MERRA-2. Yet, unlike the good forecasts, there is a

lack of agreement in the ensembles, especially over

the western United States. This suggests that high

confidence of troughing over the western United States

provides a forecast of opportunity. The U900 anomalies

additionally present a forecast of opportunity. The good

forecasts simulate the easterlies in the Caribbean,

comparable to MERRA-2, and there is general ensem-

ble agreement within the Caribbean LLJ index domain.

The bad forecasts do not resembleMERRA-2, but there

are unhatched regions in the Caribbean LLJ index do-

main for 1988 as well as for the southeastern Caribbean

Sea in both 1988 and 2016. The ensembles disagree on

the moisture transport from the tropical Atlantic into

the Caribbean. Accordingly, the confidence for those

FIG. 12. As in Fig. 11, but for CCSM4.
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FIG. 13. V900 anomalies for (left) MERRA-2 and (center) and CCSM4 ensemble mean. (right) CCSM4 probabilities for above-normal

(upper tercile) and below-normal (lower tercile) events, only showing 50% or greater probabilities. Rows indicate different case study

events. Boxes indicate LLJ index domain.
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FIG. 14. As in Fig. 13, but for precipitation anomalies. Left column observations are from CPC unified gauge-based analysis. Boxes

indicate Great Plains precipitation index domain.
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forecasts should decrease since this is an important fa-

cilitator for Great Plains LLJ formation.

The average Z500 signal-to-noise ratios are relatively

high in the western United States in MERRA-2, though

CCSM4 presents low signal-to-noise ratios across the

extratropical North Pacific basin and western North

America (Fig. 17, top row). The average U900 signal-

to-noise ratios are relatively high in the lower-left part

of the Caribbean LLJ index domain in MERRA-2 and

within most of the Caribbean LLJ index domain in

CCSM4 (bottom row). This provides evidence that the

phase of PNA and Caribbean LLJ teleconnections may

present a signal beyond two weeks and aid in mid-

summer subseasonal forecasting, but currently CCSM4

only hints at long-term prediction potential for the

Caribbean LLJ.

4. Summary and discussion

Here we analyzed the 1982–2016 July months in

MERRA-2 and CCSM4 to assess the ability of proba-

bilistic forecasts to depict the Great Plains LLJ dur-

ing this peak time for moisture fluxes and precipitation.

Subseasonal forecasting of southerly LLJs starts with

understanding its interannual variability in observations

and analyzing the limits of the model being employed.

This study was able to evaluate the strengths and

weaknesses of the CCSM4 forecasts, and it identified

potential sources of predictability in the model for the

Great Plains LLJ and its associated precipitation.

The CCSM4 forecasts overall overestimated the

magnitude of the climatological Great Plains LLJ,

extended it too far east, and misrepresented its vari-

ability. Accordingly, the magnitude of the climato-

logical precipitation in the Great Plains and Midwest

is underestimated. This forecast climatology is im-

proved over the free-running (noninitialized) CCSM4

climatology for both V900 and precipitation. The

anomaly correlation coefficient and RPSS for the

forecasts revealed that the model skill for V900 de-

creased east of the climatological jet, and its skill

for precipitation decreased outside the expected jet

exit region. These regions of high anomaly correla-

tion coefficient and RPSS are relatively consistent with

NMME forecasts found on CPC website (https://

www.cpc.ncep.noaa.gov/products/NMME/) and with

Becker et al. (2014). July forecasts initialized on 1 June

were also briefly investigated, addressing whether the

CCSM4 forecast model has an adjustment period. In

some cases, longer lead times can increase forecast skill,

FIG. 15. Difference of SST anomalies between wet and dry events. (top) Pacific SST anomalies (color-shaded contours) as such: (left)

wet event minus dry event for good forecast years in MERRA-2 (1993–88), (left center) good CCSM4 wet forecast minus good CCSM4

dry forecast (1993–88), (right center) wet event minus dry event for bad forecast years in MERRA-2 (2016–03), and (right) bad CCSM4

wet forecast minus bad CCSM4 dry forecast (2016–03). (bottom) As in the top row, but for Atlantic SST anomalies. Forward (back)

hatched region describes where 70% of the ensembles agree with the sign of ensemble mean in a respective dry (wet) event, for the

respective Niño-3.4 and AMO index domain.
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as the model may experience an initialization shock

that reduces near-term forecast skill. The anomaly cor-

relation coefficient and RPSS for 1 June initialization

time were very low, excluding it from further analysis.

There are relationships established in the literature

connecting the Great Plains LLJ to SST and circula-

tion variability that have been explored in this study as

potentially consistent predictors for the Great Plains

FIG. 17. Average signal-to-noise ratios in July monthly means for Z500 in (top left) MERRA-2 and (top right)

CCSM4. (bottom) As in the top row, but for U900. Boxes indicate Caribbean LLJ index domain.

FIG. 16. As in Fig. 15, but for (top) Z500 anomalies and (bottom) U900 anomalies. Boxes indicate Caribbean LLJ index domain.

Forward (back) hatched region describes where 70% of the ensembles agree with the sign of ensemble mean in a respective dry (wet)

event, for the respective extratropical Pacific and entire Caribbean domain.
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LLJ. MERRA-2 and CCSM4 forecasts indicate that the

following features/patterns are linked to a strengthened

Great Plains LLJ: 1) strong Caribbean LLJ, 2) negative

PNA phase, 3) El Niño phase, and 4) cool AMO phase.

The linear regressions, KDEs, and case studies suggest

that perhaps the largest of forecast of opportunity is

revealed through circulation predictors. CCSM4’s cir-

culation response from the Caribbean LLJ and PNA are

comparable toMERRA-2, even outside the LLJ region.

TheKDE for positive Caribbean LLJ and negative PNA

events had a large shift in MERRA-2 and CCSM4.

CCSM4 forecasts failed to reproduce realistic meridio-

nal wind responses to SST anomalies outside the LLJ

region. This may explain the flawed circulation forecasts

(and as an extension, precipitation forecasts) in the

Southeast United States.

The case study analysis decomposed the large-scale

environment between good and bad forecasts. The

good forecasts captured troughing over the United

States and easterlies in the Caribbean Sea with an

ensemble agreement of 70% or greater, suggesting

that the circulation predictors (negative PNA and

positive Caribbean LLJ) can be used to determine

forecast confidence in CCSM4 forecasts (i.e., forecast

of opportunity). In the bad forecasts, the CCSM4 en-

sembles lacked agreement for either one or both years.

Furthermore, the MERRA-2 signal-to-noise ratios for

the Z500 July monthly mean were highest in the

western United States, and the ratios for the U900 July

monthly mean were highest in the Caribbean Sea,

supporting that these circulation predictors may hold

influence beyond two weeks. However, CCSM4 only

exhibits the high signal-to-noise ratios for U900 in the

Caribbean Sea. Interestingly, the PNA pattern was a

persistent signal in MERRA-2 for both cases, and the

CCSM4 was confident in its incorrect circulation over

the extratropical North Pacific. This highlights that

PNA-like wave excitation is not always forced by

ENSO alone (Ding et al. 2011; Zhu and Li 2016), and

the model may fail to represent variability in the ex-

tratropical North Pacific (Fig. 17), which should be

explored in future studies.

Results from Kam et al. (2014) are consistent with our

interpretation of SST anomalies in subseasonal mid-

summer climate forecasting. Confidence in the forecast

should depend less on the phase of ENSO and AMO.

They argued that the link between Midwest hydro-

climate and SST anomalies is strongly coupled in the

NMME climate forecast models and may overestimate

their relationship and negatively affect skill. This is

analogous to the case study forecast for 2016 (bad/wet),

which had a cooler signal in the equatorial Pacific and

warmer signal in the Atlantic (Fig. 15, columns 3 and 4)

that could explain a poor forecast of dry anomalies in the

Midwest (Fig. 14, bottom row).

Generally, there are shortcomings when using only

four cases to demonstrate the complexity of SST and

circulation variability. These cases are not represen-

tative of all extreme wet and dry months. Instead, they

are merely used to help explain discrepancies in these

bad forecasts and find consistent patterns of model

agreement in the good forecasts. Using monthly means

only considers contemporaneous links between the

Great Plains LLJ and precipitation as well as the pre-

dictor and Great Plains LLJ. Lead–lag relationships

exist between the Great Plains LLJ and precipitation

(Weaver and Nigam 2011), ENSO (Danco and Martin

2018; Krishnamurthy et al. 2015), PNA (Harding and

Snyder 2015), and Caribbean LLJ (Krishnamurthy

et al. 2015). Last, dry months are not necessarily

equal and opposite manifestations of the circulation in

wet months.

Future research will need to address the differences

between spring and late-summer Great Plains LLJ

variability and mechanisms. Interannual SST vari-

ability still has several unanswered questions, such as

whether seasonal transition of El Niño affects the

jet or if the tropical Atlantic has a role. CCSM4 should

be explored for how it depicts topography modulation

and associated Great Plains LLJ formation. In addi-

tion, there are potentially other factors to consider as

predictors, such as sea surface salinity over subtropical

North Atlantic (Li et al. 2016; Li et al. 2017) and low-

level vorticity over the Southeast United States (Pu

et al. 2016). Soil moisture is a significant predictor

of Great Plains LLJ and Great Plains precipitation

that was not discussed. It has not been overlooked,

but rather CCSM4 is recognized as having low land–

atmosphere coupling (Infanti and Kirtman 2016).

Atmospheric initialization has been shown to be a

much stronger influence than land initialization on

precipitation (and temperature) prediction on sub-

seasonal time scales.

Accurate subseasonal and seasonal prediction of the

Great Plains LLJ and precipitation is still distant. There

are hurdles to overcome in many models’ representa-

tions of them; nevertheless, any advancement toward

forecasting heavy precipitation events with greater lead

time is certainly valuable.
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